Catalysis: transition-state molecular recognition?

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalysis: transition-state molecular recognition?

THE KEY TO UNDERSTANDING THE FUNDAMENTAL PROCESSES OF CATALYSIS IS THE TRANSITION STATE (TS): indeed, catalysis is a transition-state molecular recognition event. Practical objectives, such as the design of TS analogues as potential drugs, or the design of synthetic catalysts (including catalytic antibodies), require prior knowledge of the TS structure to be mimicked. Examples, both old and new...

متن کامل

Quantifying the limits of transition state theory in enzymatic catalysis

While being one of the most popular reaction rate theories, the applicability of transition state theory to the study of enzymatic reactions has been often challenged. The complex dynamic nature of the protein environment raised the question about the validity of the nonrecrossing hypothesis, a cornerstone in this theory. We present a computational strategy to quantify the error associated to t...

متن کامل

Transition state for protein-DNA recognition.

We describe the formation of protein-DNA contacts in the two-state route for DNA sequence recognition by a transcriptional regulator. Surprisingly, direct sequence readout establishes in the transition state and constitutes the bottleneck of complex formation. Although a few nonspecific ionic interactions are formed at this early stage, they mainly play a stabilizing role in the final consolida...

متن کامل

Molecular basis of sphingosine kinase 1 substrate recognition and catalysis.

Sphingosine kinase 1 (SphK1) is a lipid kinase that catalyzes the conversion of sphingosine to sphingosine-1-phosphate (S1P), which has been shown to play a role in lymphocyte trafficking, angiogenesis, and response to apoptotic stimuli. As a central enzyme in modulating the S1P levels in cells, SphK1 emerges as an important regulator for diverse cellular functions and a potential target for dr...

متن کامل

Tandem rhodium catalysis: exploiting sulfoxides for asymmetric transition-metal catalysis.

Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. A detailed mechanistic analysis of this transformation using both experimental and theoretical methods revea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Beilstein Journal of Organic Chemistry

سال: 2010

ISSN: 1860-5397

DOI: 10.3762/bjoc.6.117